IPDA Registry Service Design Specification

International Planetary Data
Alliance (IPDA)
Registry Service Design Specification
Registry Implementation Project
December, 2010
Version 0.1
CHANGE LOG

	Revision
	Date
	Description
	Author

	0.1
	December 2010
	Initial draft.
	

	
	
	
	

TABLE OF CONTENTS

31.0
EXECUTIVE SUMMARY

1.1
Purpose
3
1.2
Applicable Documents
3
2.0
DESCRIPTION
4
3.0
USE CASES
6
3.1
Manage Policy
7
3.2
Publish Artifact
7
3.3
Update Artifact
8
3.4
Approve Artifact
8
3.5
Deprecate Artifact
8
3.6
Undeprecate Artifact
9
3.7
Delete Artifact
9
3.8
Query Artifact
9
4.0
DESIGN PHILOSOPHY, ASSUMPTIONS, AND CONSTRAINTS
10
5.0
DETAILED DESIGN
11
5.1
Architecture
11
5.2
Interface Design
12
External Interface Design
13
Internal Interface Design
14
5.3
Data Model
15
5.4
Registry Classes
16
6.0
DEPLOYMENT
18
APPENDIX A ACRONYMS
20

1.0 EXECUTIVE SUMMARY

The multi-disciplinary nature of planetary science and the increasing number of national space agencies involved in planetary exploration suggest the need for a common architecture, standards and shared services to ease discovery, access and use of planetary data by world-wide scientists regardless of which agency is collecting and distributing the data and to ensure access to and exchange of high quality planetary science data products across international boundaries.

“Registries” is an element under the International Planetary Data Alliance (IPDA) Common Architecture. It describes the shared registry services that are used by multiple IPDA members and institution. Registries are catalogs of IPDA service offerings and standard data values that are necessary to enable interoperability. For example, a registry may contain information about services offered within the IPDA (e.g., various access points for getting planetary data from an agency) or it may provide standard data values such as mission names, etc so they are used consistently across agencies.

This document addresses the use cases and software design of the Registry Service for the IPDA system.
1.1 Purpose

The purpose of this document is to initiate the development of the “Registries” element of the IPDA Architecture. This document will convey the resulting design and implementation in a manner that is understandable to the broad spectrum of IPDA stakeholders.
The IPDA, in its level 2 requirements, identified the following requirement that is the driver for the Registry Service:

3.9 IPDA will publish standards for querying planetary data system catalogs including standard query models, protocols, and templates of user interfaces
1.2 Applicable Documents

1) IPDA Information Level 1 and 2 Requirements, January 2008, http://planetarydata.org/standards/ipda-requirements-20080122.pdf

2) Developing a Core Set of Data Standards for the IPDA, Concept White Paper, January 2007, http://planetarydata.org/documents/white-paper-wp/ipda-wp-001_1_0_2007feb07-ipda-developing-a-core-set-of-data-standards-for-the-ipda
3) NASA-PDS/ESA-PSA Planetary Data Interoperability, July 2005, http://planetarydata.org/documents/white-paper-wp/IPDA-STC-WP-001_1_0-2005JUL01-NASA%20ESA%20Interoperability.pdf
4) IPDA System Architecture Specification, April 2009, http://planetarydata.org/standards/IPDA_SystemArch_20090518.pdf/view

5) CCSDS Registry and Repository Reference Model, February 2, 2010.
6) IPDA Planetary Data Access Protocol, July 2010

http://planetarydata.org/projects/inactive-projects/data-access/documents/pdap-versions/IPDA_PDAP_v0.4_25_Jun_2009.pdf/view

2.0 DESCRIPTION

The Registry service provides the tracking and locating artifact function for the IPDA system (referred to as the “system” from this point forward). The intent of this service is to facilitate tracking, auditing and maintenance of artifacts within IPDA (e.g., data, dictionary definitions, services, etc.).

Within the system, the Registry service will have a limited set of external interfaces and will mostly interact with other system components. The rationale behind this is to reduce the complexity of the service as its functions are at the core of the system. Other services will build upon the information maintained in any given registry and will expose this registry-based information via external interfaces. This separation of concerns will help the system evolve as any external requirements can be leveraged on other services and thus reducing the impact to this core component.

The Registry service supports several interfaces to other services in the system. In general, these services will interact with the registry to inform the service about a new managed artifact or lookup/update basic information about an existing registered artifact. The registry will maintain two types of registrations:

Metadata Entry
This type of entry will simply capture metadata describing objects within the system.

Digital Object Entry
This type of entry points back to a physical set of bits. This would be items such as data products and documents.

The following is an accounting of logical registries that would be available within the system:

Inventory
As indicated above this registry instance serves as a means to capture the products within the system. Registration of products will occur by crawling local repositories at the IPDA participant agency. Products will remain within their local repositories and only enough information to locate and audit the product is gathered. This information will include, but not be limited to: access points, checksum, file name, and file size.

Dictionary
This registry captures and stores object and element definitions that make up the data dictionary. Management of these definitions can occur in the IPDA Information Model, which exports this information to the logical instance of the service.

Service
This registry captures descriptions about services provided by the system. IPDA participants can share their services via this registry to help promote reuse. These descriptions could evolve over time from simple documentation in the form of a web page or document to something along the lines of a WSDL or WADL formatted description. The service registry will not dictate interaction with a given service but rather exist as a means to document and promote existing services.

The service defined in this document will provide the IPDA system with a single implementation of registry capabilities for use by the other services and applications within the system. This service is tailor-able depending on the type of registry and types of artifacts to be registered with a given instance.

3.0 USE CASES

A use case represents a capability of the service element and how the user (actor) interacts with the system. It should be at a high enough level so as not to reveal or imply the internal structure of the system. An actor is an object (e.g., person, application, etc.) outside the scope of the component but interacts with the component. This section captures the use cases for the Registry service based on the description of the service from the previous section as well as use cases defined in the CCSDS Registry and Repository Reference Model [5]. These use cases will be used in the derivation of requirements for the service. The following diagram details the use cases:

[image: image1.jpg]Q@ Wange Poly

Approve
Harvestingest b ot
Senvice
Deprecate.
Artifact

Undeprecate
Data Engineer Artifact

Delete
Artifact

Operator
Publish Artifact

‘Search Service

Figure 1: Registry Service Use Cases

The above diagram identifies the following actors (represented as stick figures):

Data Engineer

This actor represents an engineer that curates the data before and after it enters the IPDA system.

Harvest/Ingest Service
This actor represents the software within the system that will perform automated registration of artifacts.

Operator

This actor represents an engineer that is responsible for configuring and monitoring the system.

Search Service
This actor represents the software within the system that will query for registered artifacts.

The following sections detail the use cases identified in the above diagram.

3.1 Manage Policy

The Registry service is policy driven with regard to the types of artifacts that it registers, the associated metadata it expects to receive for an artifact and the allowed operations on a type of artifact. This use case pertains to the Operator actor.

1. Operator authenticates for access to the Registry service interface.

2. Operator submits an update to the Registry service policy to add, modify or delete a type of artifact via the Registry service interface.

3. Registry service accepts (verifies input against constraints) and commits (updates the underlying metadata store) the operation.

3.2 Publish Artifact

Register artifacts with the system for the purpose of tracking, discovery and retrieval. This use case pertains to the Ingest and Harvest services that will perform automated registration of artifacts. It also pertains to the Data Engineer who will perform ad hoc registrations of artifacts within the system.

1. Ingest/Harvest service authenticates for access to the Registry service API.

2. Ingest/Harvest service submits an artifact for registration via the Registry service API.

3. Registry service validates the metadata submitted for the artifact.

4. Registry service assigns a version to the artifact based on the IPDA identifier.

5. Registry service records the metadata associated with the artifact in the underlying metadata store.

Alternative: Ad Hoc Registration
At step 1, the Data Engineer initiates the artifact registration.

a. Data Engineer authenticates for access to the Registry service interface.

b. Data Engineer submits an artifact for registration via the Registry service interface.

c. Return to primary scenario at step 3.

3.3 Update Artifact

Update a registered artifact and its associated metadata. This use case pertains to the Data Engineer who will perform artifact registration updates within the system.

1. Data Engineer authenticates for access to the Registry service interface.

2. Data Engineer submits an updated artifact for registration via the Registry service interface.

3. Registry service validates the metadata submitted for the artifact.

4. Registry service records the metadata associated with the artifact in the underlying metadata store.

3.4 Approve Artifact

Approve registered artifacts in order to make them visible to the public. This use case pertains to the Data Engineer who will approve registered artifacts.

1. Data Engineer authenticates for access to the Registry service interface.

2. Data Engineer marks a registered artifact as approved via the Registry service interface.

3. Registry service records the approval in the underlying metadata store.

3.5 Deprecate Artifact

Deprecate registered artifacts when no longer pertinent. This could be due to the availability of a newer version of the artifact. This use case pertains to the Data Engineer who will deprecate registered artifacts.

1. Data Engineer authenticates for access to the Registry service interface.

2. Data Engineer marks a registered artifact as deprecated via the Registry service interface.

3. Registry service records the deprecation in the underlying metadata store.

3.6 Undeprecate Artifact

Undeprecate registered artifacts when their pertinence has been restored. This use case pertains to the Data Engineer who will undeprecate registered artifacts.

4. Data Engineer authenticates for access to the Registry service interface.

5. Data Engineer marks a registered artifact as undeprecated via the Registry service interface.

6. Registry service records the undeprecation in the underlying metadata store.

3.7 Delete Artifact
Delete registered artifacts from the registry. This will normally be utilized during testing but could be utilized during operations if a registration was made by mistake. Privilege for this capability should be limited. This use case pertains to the Data Engineer actor who will delete registered artifacts.

1. Data Engineer authenticates for access to the Registry service interface.

2. Data Engineer marks a registered artifact as deleted via the Registry service interface.

3. Registry service deletes the metadata associated with the artifact in the underlying metadata store.

Alternative: Operation Not Allowed

At step 3, the Registry service does not allow the operation per policy.

a. Registry service checks policy for allowed operations.

b. Registry service does not allow deletion of the artifact per policy.

3.8 Query Artifact

Discover registered artifacts from the registry by submitting queries against the registered metadata attributes. This use case pertains to the Data Engineer and Search service actors.

1. Search service submits a query for artifact(s) via the Registry service API.

2. Registry service accepts the query and returns metadata for one or more artifacts from the underlying metadata store matching the criteria.

4.0 DESIGN PHILOSOPHY, ASSUMPTIONS, AND CONSTRAINTS
The intent of the Registry service is to provide a generic and simple solution for registering artifacts within the system. The design of this service heavily leverages current work efforts by CCSDS in the form of the Registry and Repository Reference Model [5]. This reference model in turn, heavily leverages the ebXML suite of standards managed by OASIS.

5.0 DETAILED DESIGN
The design covers the component breakdown within the service, external/internal interfaces and the associated data model.

5.1 Architecture

The following diagram details the component breakdown for the Registry service:

[image: image2.jpg]Operator
Portal/
Web Site

Metadata

Archive

Metadata

Harvest

Metadata

Metadata

Fegistry Service

Replication Tool

F Metadata

Registry(s)

Registry
(REST-Based API)

Metadata —»[

¢ o
rd Bl .=

WMetadata
Store

Data

>| Verification Tool

Search(s)

Figure 2: Registry Service Architecture

There are two scenarios for populating a registry:

Ad hoc Access via Portal
Although this is somewhat of a misnomer because the portal will use the REST-based API to access the service, this is where the Data Engineers can perform ad hoc registrations as well as the perform functions like approve and deprecate which are probably not suitable for automated access. Ad hoc access also includes performing functions like query for the purposes of managing the registry.

Automated Access via API
This scenario represents access from services like Harvest, where registrations are automated and achieved through service-to-service communication via the REST-based API, as well as the Planetary Data Access Protocol (PDAP). The PDAP interface is defined in the IPDA Planetary Data Access Protocol document [6].

The diagram above assumes that the registered artifact resides in a managed repository (i.e., archive directory structure) and will be registered in place. The following diagram supports the scenario where the Storage service is utilized to manage the physical bits of the registered artifact:

[image: image3.jpg]{

DataMetadata

Operator
Portal/
Web Sie

Data

Storage

[i}

Data

Archive

ﬂJ*

[~ Metadata _|

Data

Fegistry Service

-
e

[~

Verification Tool

isiry(s)
Repication Tool |<—- Metadata g
Me‘{m
P—
Registy Searcn(s)
|| ResTaasedar) Vetadetz —>!

Figure 3: Registry Service Architecture (with Storage)

This scenario mainly pertains to the management of schemas and other documents within the system that will not reside in an IPDA archive directory structure. In this case the Operator Portal submits the files to the Storage service and then registers those files as an artifact with the Registry service.

In addition to population of the registry, there is a metadata export scenario from the registry. This is where the Registry service facilitates end-user search. Instances of the Search service will query one or more instances of the Registry service in order to generate search indices. These indices are tailor-able for the search application that will utilize them.

In addition to registry population and metadata export, the service will also provide the capability to perform verification for registered artifacts. This capability is intended to be executed local to the registry or more specifically, local to the repository associated with the registry. A capability like this could utilize a lot of bandwidth if executed remotely.

5.2 Interface Design

The following diagram focuses on the interfaces, both external and internal for the Registry service:

[image: image4.jpg]Operator Portal / Web Site
(Web-Based Interface)

Publish/Update

Browse!
Securiy Service Access

Publishiupdte

v v

REST-Based Interface

H

Core Regisiry Functionaliy.
(Java API)

¥

Metadata Store Interface.

Registry Service

Metadata

Backend Implementation

Dery. MysaL Other

Figure 4: Registry Service Interfaces

The interfaces are described in more detail in the following sections.

External Interface Design

The Registry service supports two external interfaces: the Planetary Data Access Protocol (PDAP) and a web service REST-based protocol.

The PDAP interface is defined in the IPDA Planetary Data Access Protocol document [6].

The web service REST-based external interface is accessible via the Hypertext Transfer Protocol (HTTP). A REST-based interface exhibits the following characteristics:

· A URL assigned to every resource

· Formulate URLs in a predictable manner

· Use HTTP methods for actions on a resource (GET, POST and DELETE) - Due to similarities between POST and PUT, the design team decided to utilize POST exclusively.

· Leverage HTTP protocol headers and response codes where applicable

The goals for the interface are as follows:

· Keep the service simple and refrain from adding too much functionality

· Allow messaging in the form of XML or JavaScript Object Notation (JSON)

· Allow for extensibility as new artifact types are defined

In addition, each interface should adhere to the following:

· Be self documenting

· Have a defined standard response including passed parameters

· Provide a schema for the defined response

· Provide a command-line method of execution

Any interface that modifies the contents of the registry will incorporate security. This means that any interface specified below as an HTTP POST will first require interaction with the Security service. Integration with the Security service is accomplished through the Application Server and does not require any specific coding within the Registry service. The only change to these interfaces will be in terms of a required HTTP header or cookie being set that will provide the means to verify the validity of the request. These requests will require secure HTTP (HTTPS).

The following are some examples detailing the functionality of the REST-based interface using HTTP methods. This interface delegates all functions involving a product:

· http://planetarydata.org/services/registry/products/

· GET: Retrieves a paged list of products from the registry.
· POST: Publishes a product to the registry.
This interface acts on a specific product (lid stands for logical identifier):

· http:// planetarydata.org/services/registry/products/{lid}/{version}/

· GET: Retrieves the product from the registry.
· POST: Updates the product in the registry.
· DELETE: Removes the product from the registry.

Internal Interface Design

The primary internal interface for the Registry service involves communication with the underlying metadata store. This interface will follow a generic design with the intent of supporting multiple backend implementations for the metadata store. The layered design for the backend implementation allows for technology refresh and multiple deployment scenarios. The metadata store interface will support the data model detailed in the following section of this document.

5.3 Data Model

The following diagram represents the CCSDS Registry logical model (key classes) and is the basis for implementing the underlying metadata store for this service:

[image: image5.jpg]—classificiObjct

Classification

-classifications | -nodeRepresertatin : String [0.1]

5

ExtrinsicObject

mimeType - Sting [0.1]

RegistryObject

[isOpacue - String [0.1]

JassificatianScheme

[Classificationscheme.

o

isirternal - boolean [1]

serviceBindings

ServiceBinding

-accessURI: String [0.1]

AargetBinding

1 |description: String (0.1

name String [0.1]

Federation

replcationSyneLatency - String [0.1]

identifiable i St [0.1]
heme - String [2.1]
5 Sting [1]

Siot

-siots [-name_s String 1]

o vlues Srng)
ShiType: St 0.1

Registry

[-repicationsyncLatency - tring [0.1]

operator : String 1]

SpecificationVersion : Strng [1]
conformanceprofie String [0.1]
-catalogingLatency - String [0.1]

1

Service

noceTypel

|classificationode:

04

parert

1

(Classificationtode

—objectType

path: String [0.1]

Status

01

-code : String [0.1] (0.1

Figure 5: Registry Service Data Model

The classes detailed in the diagram above and a couple of others that are important to the design of the Registry service are defined below:

Association (not pictured)
Specifies a relationship between two RegistryObject instances. An IPDA example of an association is that a data product is a member of a collection.

AuditableEvent (not pictured)
Instances of AuditableEvent record the actions taken against a RegistryObject instance. For example, approval or deprecation of a RegistryObject is an auditable event.

Classification
Specifies the classification of a RegistryObject utilizing the ClassificationScheme and ClassificationAgency classes. Classifications utilized by the Registry service are defined in the IPDA data model.

ExtrinsicObject
This is the place holder object for products in the data model. All IPDA products (e.g., data products, investigations, instruments, personnel, etc.) will be derived from the ExtrinsicObject class. The IPDA products are defined in the IPDA data model.

Federation
An instance of the Registry service may belong to a federation of registries. There is likely to be one federation defined for the IPDA Registry service instances.

Identifiable
This class provides the ability to identify objects by an id attribute and is the parent class for all of the classes defined here.

Registry
Represents an instance of a Registry service within the IPDA.

RegistryObject
The RegistryObject class extends the Identifiable class and serves as a common super class for most classes in the data model. The term “artifact”, used throughout this document, is equivalent to an instance of the RegistryObject class.

Service
This class captures descriptions of services utilizing the ServiceBinding class.

Slot
The Slot class provides a dynamic way to add arbitrary attributes to RegistryObject instances. For example, this is where the IPDA will capture the 10 plus or minus 2 keywords to be utilized in global search scenarios.

5.4 Registry Classes

There are four key types of registry services that are applicable to IPDA.

Centralized Service Registry

A centralized service registry is responsible for managing all IPDA service registrations. It provides the ability to describe and publish, and allow discovery the offered functionality of the IPDA services (e.g., a web site) developed and maintained by all the IPDA Agencies.

Centralized Data Dictionary Registry

A centralized data dictionary registry is responsible for managing IPDA data dictionary registrations. It provides the ability to describe and publish, and allow discovery the formal definitions of the components and the organization of IPDA data defined in the IPDA Information Model.
Centralized (Replicated) Inventory Registry
A centralized service registry is responsible for replicating product metadata managed at various IPDA agencies. It provides the ability to describe and publish, and allow discovery all data products managed and archived locally at the IPDA agencies.

Local Product Registry
A product registry is responsible for managing IPDA data products. It provides the ability to describe and publish, and allow discovery the data products managed and archived at a local IPDA agency.
6.0 DEPLOYMENT
The following diagram depicts a deployment scenario for service instances:

[image: image6.png]search index
Search

for IPDA

Metadata

PDAP
Service

Agency
Catalog

Metadata
|
g 200 e

IPDA Agency with local Catalog
Replicate metadata (Registry)
Provide local agency search index

<— Metadata

(Inventory)

Registry

IPDA
Central Service, Data Dictionary Registry
Inventory Registry
Provide search index for IPDA

Metadata

IPDA
Harvest

Metadata

ata Dictionary)

Reqistry w/
DAP Service
(Inventory)

Metaidata

Local
Harvest

Data/Metadata

T 20

Registry

Registry
(Service)

Metadata —=>

Search

search index

for specific
IPDA Agency

IPDA Agency without local Catalog
Add local Registry
Provide local agency search index

Figure 6: Registry Service Deployment

The registry deployment instances depicted in the diagram include:

IPDA Agency Local Registry
For the IPDA agencies that have local repositories without existing data management infrastructure (Registry/Catalog), a local instance of the Registry Service with PDAP service can be added for local inventory management. A local instance of the Harvest service can be configured for the local repository populates this registry. A local Search service will be able to extract metadata from this registry to create local index to support local search.

Centralized (Replicated) Inventory Registry
An IPDA centralized inventory registry for hosting replicated registry entries from all IPDA Agency Local Registry service instances. This registry will allow for catalog-level search without the need to perform live queries across the distributed registry instances. Replications to the registry and index generation are performed during off-peak hours further increasing productivity of the system. The Harvest service will be configured to extract registry entries from the exiting infrastructures using PDAP services to populate the Centralized IPDA Replicated Inventory Registry.

Centralized Service Registry

An IPDA centralized registry for managing IPDA service registrations can be supported. The Operators will can the Operator Portal to populate this registry.

Centralized Data Dictionary Registry

An IPDA centralized registry for managing IPDA data dictionary registrations can be supported. The Operators can use the Operator Portal to populate this registry. Population can also occur from the IPDA Information Model, which exports the definitions into the registry.

APPENDIX A ACRONYMS
The following acronyms pertain to this document:

IPDA – International Planetary Data Alliance

ESA – European Space Agency

PSA – Planetary Science Archive

CCSDS – Consultative Committee for Space Data Systems

PDAP – Planetary Data Access Protocol

WSDL – Web Service Definition Language

WADL – Web Application Description Language

HTTP – HyperText Transfer Protocol

OASIS – Organization for the Advancement of Structured Information Standards
PAGE
20

