

 1

 International Planetary Data Alliance (IPDA)

Registry Service Protocol
Version	
 1.0	

Editor:
 S. Hardman

Authors:
 S. Hardman, P. Ramirez

Abstract
This document describes the protocol for the REST-based API of the Registry Service.

Status of this document
This document was generated by the Registry Development and Coordination Project
(2011-2012).

Acknowledgments
This document is based on the PDS Registry Service Operation Guide.

 2

Change Log

Revision Date Description
1.0 July 2012 Initial release.

 3

Contents
Abstract ... 1	

Status of this document .. 1	

Acknowledgments ... 1	

Change Log .. 2	

Contents .. 3	

1	
 Executive Summary .. 4	

1.1	
 Purpose .. 4	

1.2	
 Applicable Documents ... 4	

2	
 Syntax ... 5	

3	
 Registry Endpoints .. 6	

3.1	
 Publish Artifacts ... 6	

3.2	
 Query Artifacts ... 9	

3.3	
 Update Status .. 11	

3.4	
 Delete Artifacts ... 12	

3.5	
 Ping .. 13	

3.6	
 Report .. 13	

Appendix: Acronyms .. 14	

 4

1 Executive Summary
This document captures the protocol for the Registry Service. As described in the
Registry Service Design Specification [1], this protocol is implemented as a REST-based
interface for the Registry Service.

1.1 Purpose
This document is intended for the reviewer of the protocol as well as the developer of the
protocol (for implementation) and tester of the protocol (for quality assurance).

1.2 Applicable Documents
1) IPDA Registry Service Design Specification, Version 1.0, July 2012.

2) Registry Service API, June 2012.

 5

2 Syntax
The interface is a REST-based interface over the HTTP protocol. The HTTP protocol is
pretty basic in nature with respect to passing parameters. The following details the
syntax for passing parameters:

http://<host>/<path>[?<parameter>=<value>[&
<parameter>=<value>…]]

As shown above the “&” symbol separates multiple clauses (parameter/value pairs) and
may be interpreted as AND or OR depending on the underlying implementation. For this
protocol, the underlying implementation should interpret it as an AND meaning that each
clause must evaluate to true in order for a specific object to be included in the result set.

A request to the service is transmitted as an HTTP GET, POST or DELETE request.
Parameter names in a request are case sensitive, meaning they should be represented
in the case for which they are defined in the Registry Service API [2] document. Valid
parameters are specific to a given endpoint. Values are also case sensitive.

The base URL, depicted as http://<host>/<path> in the example above, will vary based
on the underlying implementation and its deployment. The main deployment of the
Registry Service for IPDA, hosting the catalog-level metadata, will have the following as
its base URL:

http://planetarydata.org/registry

For the examples that follow, the base URL is represented as <base-url>.

 6

3 Registry Endpoints
This section provides an overview of the endpoints supported by the Registry Service.
Details on the endpoints including supported parameters can be found in the Registry
Service API [2] document. This document is available online for a given instance of the
service at the following endpoint:

<base-url>/docs

Any standard web browser (e.g., Firefox, Safari, Internet Explorer, etc.) will allow
interaction with the query and retrieval interfaces of the service. The cURL utility offers
the most flexible means for interacting with the service. The utility comes installed on
most UNIX-based platforms and is available for download for the Windows platform. The
examples in the sections that follow utilize cURL to interact with the service. If cURL is
not installed on the local machine, Wget is a suitable alternative.

3.1 Publish Artifacts
The Registry Service supports a wide range of artifacts for registration with the service.
In ebXML terms, artifacts are referred to as Registry Objects. The following subsections
provide examples for each of the supported Registry Object types.

3.1.1 Extrinsics
In IPDA terms, an extrinsic can be a data product, document, element definition, mission
description, schema, etc. Within the ebXML terminology this maps to an Extrinsic
Object, which is simply a way for a particular instantiation of a registry to extend its
model. The following is an example of an extrinsic description in XML form:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<extrinsicObject xmlns="http://planetarydata.org"
 guid="1234v1.0"
 lid="1234"
 name="Product 1234 v1"
 objectType="Product"
 description="This is a new version test product 1234 v1">
 <slot name="first-name">
 <value>John</value>
 </slot>
 <slot name="last-name">
 <value>Doe</value>
 </slot>
 <slot name="phone">
 <value>(818)123-4567</value>
 <value>(818)765-4321</value>
 </slot>
</extrinsicObject>

 7

The extrinsic description above is contained in the new_product.xml file, which can be
found in the /examples directory of the software distribution package. The following
command registers this extrinsic with the service:

% curl -X POST -H "Content-type:application/xml" -v -d
@new_product.xml <base-url>/extrinsics

By inspecting the HTTP Response Location Header returned from the above command,
one can see the URL to the registered extrinsic. This header is a standard way for
exchanging information about a newly created resource using HTTP. The last line of the
response is the global unique identifier that the service assigned to the registered
extrinsic. The following example details how to publish a new version of the above
extrinsic to the service:

% curl -X POST -H "Content-type:application/xml" -v -d
@new_product_v2.xml <base-url>/extrinsics/logicals/1234

The value of 1234 in the example above represents the logical identifier of the original
published extrinsic, which must be specified in order for the service to recognize it as a
new version. The following is an example of a extrinsic description in JSON form:

{"description":"This is a new version test product 5678
v1",
 "name":"Product 5678 v1",
 "objectType":"Product",
 "lid":"5678",
 "slot":[{"name":"last-name","value":["Doe"]},
 {"name":"phone","value":["(818)123-
4567","(818)765-4321"]},
 {"name":"first-name","value":["Jane"]}]}

The extrinsic description above is contained in the json_product.txt file. The following
command registers this extrinsic with the service:

% curl -X POST -H "Content-type:application/json" -v -d
@json_product.txt <base-url>/extrinsics

3.1.2 Associations
In IPDA terms, an association is a relationship between two registered artifacts. The
following is an example of an association description in XML form:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<association xmlns="http://planetarydata.org"

 8

 sourceObject="1234v1.0"
 targetObject="1234v2.0"
 associationType="associatedTo"/>

The association description above is contained in the new_association.xml file. The
following command registers this association with the service:

% curl -X POST -H "Content-type:application/xml" -v -d
@new_association.xml <base-url>/associations

3.1.3 Services
In IPDA terms, a service is an electronic resource available within the system. A service
can be as simple as a web site or as intricate as the Registry Service that is described in
this documentation. The following is an example of a service description in XML form:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<service xmlns="http://planetarydata.org"
 name="PDS Service"
 description="This is a service to test adding a service
description to the registry">
 <serviceBinding
 name="IPDA Main Site"
 description="This is the PDS main web site"
 accessURI="http://pds.jpl.nasa.gov">
 <specificationLink
 name="HTTP Specification Link"
 description="This is a link to the HTTP
specification."

specificationObject="urn:uuid:HTTPSpecificationDocument">
 <usageDescription>
 Use a browser to access the PDS site. The
acceptable browsers are
 listed in the usage parameters.
 </usageDescription>
 <usageParameter>Firefox</usageParameter>
 <usageParameter>Safari</usageParameter>
 <usageParameter>Internet Explorer</usageParameter>
 <usageParameter>Chrome</usageParameter>
 </specificationLink>
 </serviceBinding>
</service>

The service description above is contained in the new_service.xml file. The following
command registers this service with the service:

 9

% curl -X POST -H "Content-type:application/xml" -v -d
@new_service.xml <base-url>/services

3.1.4 Schemes and Nodes
In order for the above artifacts to be accepted for registration by the service, the service
must be preloaded with the list of supported object types. This procedure is performed
during installation.

3.2 Query Artifacts
Although the Registry Service does not offer an advanced query interface, it does offer
interfaces for discovering and retrieving artifact descriptions. The URLs shown in the
examples below will work in a web browser.

3.2.1 Extrinsics
The following command retrieves a paged list of registered extrinsics (products) from the
service:

% curl -X GET -H "Accept:application/xml" -v <base-
url>/extrinsics

The interface above accepts a number of parameters for filtering the return results. See
the API [2] document for a detailed list of the parameters. The following command
retrieves the latest extrinsic with logical identifier 1234 from the service:

% curl -X GET -H "Accept:application/xml" -v <base-
url>/extrinsics/logicals/1234

In order to retrieve the earliest extrinsic with logical identifier 1234, append /earliest to
the URL in the example above. In order to retrieve the latest extrinsic with logical
identifier 1234, append /latest to the URL in the example above. The following command
retrieves the specific extrinsic with guid 1234, but in JSON form:

% curl -X GET -H "Accept:application/json" -v <base-
url>/extrinsics/1234v1.0

The example above will not work in a browser because it is not possible to set the HTTP
Accept Header via a browser, but the following command will work in a browser by
encoding the return type with a suffix in the URL:

% curl -X GET -v <base-url>/extrinsics/1234v1.0.json

 10

3.2.2 Associations
The following command retrieves a paged list of registered associations from the service:

% curl -X GET -H "Accept:application/xml" -v <base-
url>/associations

The interface above accepts a number of parameters for filtering the return results. See
the API [2] document for a detailed list of the parameters. In order to retrieve a specific
association, append the global unique identifier (/<guid>) for that association to the URL
in the example above.

3.2.3 Services
The following command retrieves a paged list of registered services from the service:

% curl -X GET -H "Accept:application/xml" -v <base-
url>/services

The interface above accepts a number of parameters for filtering the return results. See
the API [2] document for a detailed list of the parameters. In order to retrieve a specific
service, append the global unique identifier (/<guid>) for that service to the URL in the
example above.

3.2.4 Schemes and Nodes
The following command retrieves a paged list of registered schemes from the service:

% curl -X GET -H "Accept:application/xml" -v <base-
url>/schemes

The interface above accepts a number of parameters for filtering the return results. See
the API [2] document for a detailed list of the parameters. In order to retrieve a specific
scheme, append the global unique identifier (/<guid>) for that scheme to the URL in the
example above.

The following command retrieves the list of nodes associated with a specific scheme:

% curl -X GET -H "Accept:application/xml" -v <base-
url>/schemes/<guid>/nodes

In order to retrieve a specific node, append the global unique identifier (/<guid>) for that
node to the URL in the example above.

 11

3.2.5 Events
The service tracks auditable events for each registered artifact including submission,
approval, deprecation, etc. The following command retrieves a paged list of events from
the service:

% curl -X GET -H "Accept:application/xml" -v <base-
url>/events

The interface above accepts a number of parameters for filtering the return results. See
the API [2] document for a detailed list of the parameters. In order to retrieve events for a
specific object, append the global unique identifier (/<guid>) for the affected object to the
URL in the example above.

3.2.6 Packages
When Harvest Tool registers a bundle or collection or products with the service, it
precedes the registration with the registration of a package that all of the registered
products will be associated with. The following command retrieves a paged list of
packages from the service:

% curl -X GET -H "Accept:application/xml" -v <base-
url>/packages

The interface above accepts a number of parameters for filtering the return results. See
the API [2} document for a detailed list of the parameters. In order to retrieve a specific
package, append the global unique identifier (/<guid>) for that package to the URL in the
example above.

3.3 Update Status
When extrinsics are successfully registered with the service they are given a status of
Submitted. The status for a specific extrinsic can be modified with the following
command:

% curl -X POST -H "Content-type:application/xml" -v <base-
url>/extrinsics/<guid>/<action>

Valid values for <action> include approve, deprecate and undeprecate. The following
diagram details the relationship of the status state with the above actions.

 12

Figure 1: Registry Service Status States

As mentioned above, Harvest Tool associates all registrations with a package. The
status for the entire package, including its members, can be modified with the following
command:

% curl -X POST -H "Content-type:application/xml" -v <base-
url>/packages/<guid>/members/<action>

3.4 Delete Artifacts
The following command deletes the specific extrinsic from the service:

% curl -X DELETE -v <base-url>/extrinsics/<guid>

The same format applies to the other registry objects as well (e.g., associations,
services, etc.). As mentioned above, Harvest Tool associates all registrations with a
package. An entire package, including its members, can be deleted with the following
command:

% curl -X DELETE -v <base-url>/packages/<guid>/members

The above command does not delete the package itself. The package can be deleted
using the following:

 13

% curl -X DELETE -v <base-url>/packages/<guid>

3.5 Ping
The following command checks to see if the registry service is up and running:

% curl -X GET -H "Accept:application/xml" -v <base-url>

The above command will return the list of links to the service's endpoints and an HTTP
status of 200. From a web browser, the command returns a welcome message. Make
sure to include the trailing slash on the above command.

3.6 Report
The following command details the status of the service along with registered counts by
Registry Object type:

% curl -X GET -H "Accept:application/xml" -v <base-
url>/report

 14

Appendix: Acronyms
The following acronyms pertain to this document:

API – Application Programming Interface
ebXML – Electronic Business using XML
HTTP – HyperText Transfer Protocol
IPDA – International Planetary Data Alliance
PDS – Planetary Data System
REST – Representational State Transfer
XML – Extensible Markup Language

